2 4 Ja n 20 08 Competing orders and the doping and momentum dependent quasiparticle excitations in cuprate superconductors ⋆

نویسندگان

  • A. D. Beyer
  • C. - T. Chen
  • M. S. Grinolds
  • M. L. Teague
چکیده

The low-energy quasiparticle excitations in hole-and electron-type cuprate super-conductors are investigated via both experimental and theoretical means. It is found that the doping and momentum dependence of the empirical low-energy quasiparti-cle excitations is consistent with a scenario of coexisting competing orders and su-perconductivity in the ground state of the cuprates. This finding, based on zero-field quasiparticle spectra, is further corrobarated by the spatially resolved vortex-state scanning tunneling spectroscopy, which reveals pseudogap-like features consistent with a remaining competing order inside the vortex core upon the suppression of superconductivity. The competing orders compatible with empirical observations include the charge-density wave and spin-density wave. In contrast, spectral characteristics derived from incorporating the d-density wave as a competing order appear unfavorable in comparison with experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing orders and the doping and momentum dependent quasiparticle excitations in cuprate superconductors ⋆

The low-energy quasiparticle excitations in holeand electron-type cuprate superconductors are investigated via both experimental and theoretical means. It is found that the doping and momentum dependence of the empirical low-energy quasiparticle excitations is consistent with a scenario of coexisting competing orders and superconductivity in the ground state of the cuprates. This finding, based...

متن کامل

4 A ug 2 00 4 Experimental Investigation of the Competing Orders and Quantum Criticality in Hole - and Electron - Doped Cuprate Superconductors

We investigate the issues of competing orders and quantum criticality in cuprate super-conductors via experimental studies of the high-field thermodynamic phase diagrams and the quasiparticle tunneling spectroscopy. Our results suggest substantial field-induced quantum fluctuations in all cuprates investigated, and their correlation with quasiparticle spectra implies that both electron-(n-type)...

متن کامل

Spectroscopic Studies of Quasiparticle Low-Energy Excitations in Cuprate and Iron-Based High-Temperature Superconductors

Recent development in the physics of high-temperature superconductivity is reviewed, with special emphasis on the studies of the low-energy excitations of cuprate and iron-based superconductors. For cuprate superconductors, a phenomenology based on coexisting competing orders with superconductivity in the ground state of these doped Mott insulators is shown to provide a consistent account for a...

متن کامل

Comparative studies of the scanning tunneling spectra in cuprate and iron-arsenide superconductors

We report scanning tunneling spectroscopic studies of cuprate and iron-arsenic superconductors, including YBa2Cu3O7− (Y-123, Tc = 93 K), Sr0.9La0.1CuO2 (La-112, Tc = 43 K), and the “122” compounds Ba(Fe1−xCox)2As2 (Co-122 with x = 0.06, 0.08, 0.12 for Tc = 14, 24, 20 K). In zero field (H = 0), spatially homogeneous coherence peaks at energies  = ±SC flanked by spectral “shoulders” at ±eff ...

متن کامل

Phase Diagrams of Cuprate Superconductors – an Investigation of Competing Orders and Quantum Criticality

We present scanning tunneling spectroscopic and high-field thermodynamic studies of holeand electron-doped (pand n-type) cuprate superconductors. Our experimental results are consistent with the notion that the ground state of cuprates is in proximity to a quantum critical point (QCP) that separates a pure superconducting (SC) phase from a phase comprised of coexisting SC and a competing order,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008